O.P.Code: 23HS0833 H.T.No. **R23** SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech. II Year I Semester Regular Examinations February-2025 COMPLEX VARIABLES & NUMERICAL METHODS (Electrical & Electronics Engineering) Time: 3 Hours Max. Marks: 70 **PART-A** (Answer all the Questions $10 \times 2 = 20$ Marks) a State Cauchy-Riemann (C-R) equations in cartesian coordinates. 1 CO₁ L1 2M**b** Show that z^2 is an analytic for all z. L₂ CO₁ 2MState Cauchy's integral theorem. CO₂ L1 2M**d** Expand e^z as Taylor's series in powers of (z-3). CO₂ L₂ 2MWrite the formula to find the root of an equation by Regula Falsi method. CO₃ L12MCompare Jacoby and Gauss Seidel methods. CO₄ L5 2MWrite Newton's forward interpolation formulae. CO₅ L₁ 2MState the two normal equation used in fitting a straight line. CO₅ L1 2MWrite Taylor's formula for (x_1) to solve y' = f(x,y) with $y(x_0) = y_0$. **CO6** L12M**j** If $\frac{dy}{dx} = y - x$; y(0)=2, h=0.2 then Find the value of k_1 in R-K method of **CO6** L2 2M fourth order. PART-B (Answer all Five Units $5 \times 10 = 50$ Marks) UNIT-I a Find whether (z)=sinxsiny-icosxcosy is an analytic or not. 2 CO₁ L15M **b** Determine the analytic function whose real part is $e^x \cos y$. CO₁ **L5 5M** Prove that the function f(z) defined by $f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}$, $(z\neq 0)$ and 3 CO₁ L5 10M f(z)=0, (z=0) is continuous and the Cauchy-Riemann equations are satisfied at origin. UNIT-II Evaluate $\int \frac{z-3}{z^2+2z+5} d$ where 'c' is the circle i) |z|=1 ii) |z+1-i|=2, 4 CO₂ L₅ 10M OR

a Expand (z)=sinz in Taylor's expansion of in powers of $(z-\pi/4)$.

b Find the residue of $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ at each pole.

5

5M

5M

CO₂

CO₂

L₂

L₁

UNIT-III

6 a Find a positive root of the equation $x^3 - x - 1 = 0$ by Bisection method.

CO₃ L₁

b Find a positive root of the equation $x^4-x-10=0$ by iteration method.

CO3 L1 5M

OR

Solve the following system of equations by Gauss-Siedel method CO4 L3 10M 4x+2y+z=14; x+5y-z=10; x+y+8z=20.

UNIT-IV

8 Using Lagrange's interpolation formula, find the value of y(10) from the following table:

CO5 L3

L3 10M

5M

X	5	6	9	11	
Y	Y 12		14	16	

OR

9 Fit a straight line y=a+bx for the following data

CO5 L3

X	6	7	7	8	8	8	9	9	10
Y	5	5	4	5	4	3	4	3	3

UNIT-V

Solve $y^1=x+y$, given y(1)=0. find y(1.1) and y(1.2) by Taylor's series method.

CO6 L3

10M

10M

OR

Using Runge – Kutta method of fourth order, solve $\frac{dy}{dx} = x^2 - y$, y(0)=1. **CO6** L3 10M Find y(0.1) and y(0.2).

*** END ***